Update! HEALTHY BUILDING NETWORK IS NOW HABITABLE.
Update! HEALTHY BUILDING NETWORK IS NOW HABITABLE.
Update! HEALTHY BUILDING NETWORK IS NOW HABITABLE.
Update! HEALTHY BUILDING NETWORK IS NOW HABITABLE.
Update! HEALTHY BUILDING NETWORK IS NOW HABITABLE.
Update! HEALTHY BUILDING NETWORK IS NOW HABITABLE.

The idea of a “plastic building” might bring to mind Barbie DreamHouses or Lego towers, but probably not the real life spaces we occupy every day. However, plastics have a long history of use in construction and are increasingly being used in a wide variety of building products.

 

What are plastics?

Plastics are synthetic or semi-synthetic materials typically made from fossil fuels and their byproducts.1 Depending on the plastic’s intended use, they may also be combined with a variety of additives such as stabilizers, fillers, reinforcements, plasticizers, colorants, and processing aids, many of which are toxic chemicals that are linked to chronic disease. They are a material of choice in the built environment, however, they come with a host of deeply rooted problems.

Durable plastics are the new “frontier”

As the energy sector shifts away from fossil fuels, the fossil fuel industry has turned toward plastics as a way of maintaining demand for their products.2 An International Energy Report from 2018 showed that petrochemicals, which are used to make plastics, are slated to become the largest driver of global oil demand in the near future.3 Historically, much of the investment has been in single-use plastics, which are increasingly the focus of bans, restrictions, regulations, and product innovation due to their harmful environmental effects.2 To pick up this anticipated slack, petrochemical, fossil fuel, and plastics industries are now pushing to increase their market growth in more durable goods, like building materials.4 The building and construction industry is already the second largest consumer of plastics after packaging.5 

Plastics contribute to climate change

Plastics contribute to greenhouse gas emissions at every stage of their lifecycle. Greenhouse gases are released during fossil fuel extraction, transport, feedstock refining, and plastic manufacture, and carbon is released into the atmosphere through degradation and incineration at plastic products’ end of life.6 A 2019 Center for International Environmental Law report concluded that these lifecycle emissions may make it impossible to keep global warming below 1.5 degrees if growth continues as projected.6 Any comprehensive climate change plan must curb the production of plastics.

Plastic is ubiquitous in buildings

Maybe you know that vinyl flooring is plastic, but did you know that latex paint is mostly plastic? That many insulation products are plastic? How about carpet? Plastic-containing products can be found in almost every part of a building, from the waterproofing on foundations to roofing materials. See below for an infographic showing just some of the plastic materials in an average home. The products included are not exhaustive, but rather a list of example product types from Habitable’s InformedTM product categories where a main component is plastic. There are many more products that are predominantly made of plastic, and even more that contain smaller amounts of plastic additives or plastic binders.

Our plastic buildings are driving the growth in fossil fuels at the same time as we are diligently working to incorporate clean energy solutions and decarbonize these very same places. 

Hidden costs of cheap plastic

Plastic products are often favored due to their “low cost.”  This low retail cost is achieved by avoiding and externalizing the costs of fossil fuels and industrial pollution – and their related chronic diseases – throughout the plastics supply chain. These externalized costs are real and paid for by the BIPOC and low-income communities across the nation who are disproportionately burdened with toxic pollution flowing from refineries, chemical manufacturing, and plastics plants. It is fair to say that most of the stories about environmental justice that you have heard can be linked to plastics manufacturing.

Where is the plastic in my building?

Graphic shows plastic found in the following building materials in a house: solid surface and plastic laminate countertops, latex-based and polyurethane-based sealants, composite wood materials in doors, most carpet, vinyl flooring, synthetic turf, latex paint, PVC and PEX water pipes, polyisocyanurate insulation, expanded polystyrene insulation, extruded polystyrene insulation, and spray polyurethane foam insulation.

With the building and construction industries anticipating growth over the next several years,7 commensurate growth is to be expected in their use of plastics. Indeed, market trends and projections show a steady increase in polyvinyl chloride (aka vinyl), polystyrene, polyethylene, polyurethanes, and other plastics used in building materials.8

It is, of course, unrealistic to avoid all plastic in building materials at this time, but there are steps we can take to reduce plastic waste, decrease toxic chemical use, and curb the demand for fossil fuels. 

Select Better: Avoid worst-in-class plastics where possible. 

  • Where product performance and chemical hazards are similar or better, non-plastic products are preferred.
  • Not all plastic products are the same when it comes to impacts. Where plastic products are needed, avoid halogenated plastics or plastics reliant on halogenated chemistry during production – such as polyvinyl chloride (PVC, also known as vinyl) and epoxy-based materials. 
  • Where plastic products are needed, avoiding virgin plastic materials reduces demand for oil and gas extraction and ultimately mitigates harmful end of life scenarios for the plastic waste such as incineration or landfilling.

Prioritize Transparency: Prefer products that provide transparency 

  • Disclosure of product content including the type of plastic used and any potential additives will allow for healthier materials choices and better material end-of-life planning.
  • In the case of products containing recycled plastics, disclosure of where the recycled content originated and any additives that may be present is crucial in selecting healthier products.

Aim for Circularity: Select products designed for recycling.

  • Where possible, incorporating recyclable building materials in ways that allow for end-of-life recycling is preferred.
  • Prefer products with “take back” programs. Because true plastics recycling rates are abysmal, the most promising recycling programs are those in which manufacturers retain responsibility for their products and provide recycling options. 
  • Prefer products that are made with high levels of recycled content that has been screened to avoid toxic tag-alongs and, equally as important, contact manufacturers to recycle any existing product.

With all of these plastic products, our buildings may seem increasingly like Barbie’s DreamHouse and a climate nightmare, but as specifiers, designers, architects, contractors, and owners we can do much to control what products end up in our projects. Starting with the recommendations above, we have the power to influence demand for better and safer materials. In the case of plastics, choosing better materials can lead to less reliance on fossil fuels, fewer greenhouse gas emissions, a decrease in toxic chemical use, and a win for our changing climate.

Simona Fischer, MSR Design

As registered architect, sustainable design professional, and associate with MSR Design, Simona Fischer has spent much of her career thus far developing and testing strategies for integrating sustainable design into the workflow of architectural practice. Her experience includes project management, Living Building Challenge documentation, and firmwide sustainable design implementation.

Simona is a dynamic community of practitioners who help co-create solutions to accelerate the adoption of healthier building materials in affordable housing. She has presented at national conferences, lectures regularly at the University of Minnesota, and currently co-chairs the AIA Minnesota Committee on the Environment (COTE).

Simona was instrumental in the Living Building Challenge Petal Certification of MSR Design’s new downtown Minneapolis headquarters, which achieved the materials, beauty, and equity petals. The project incorporated more than 114 Red List Free materials and achieved a 28 percent reduction of its embodied carbon footprint by using salvaged materials. She also led the development of guidelines around transparency, sustainability, and health for the firm’s materials library, including training materials for staff and external sales reps.

We sat down with Simona to learn why materials have been a focus of her career and to get her perspective on the green building industry today.

What sparked your passion about healthier materials? Was there an “aha” moment or a time that something just clicked?

I was that kid who won a prize for designing the elementary school recycling banner, so I guess I’ve cared about materials for a long time. But my interest in building materials was piqued in architecture school, when we were challenged to create a new ecolabel. Faced with inventing a way to compare one material to another in terms of sustainability, I realized how mind-blowingly complex of a task that was. How do you make the criteria objective? How do you compare products across categories? How do you measure health – is it just by the list of ingredients, or do you include research on health outcomes factoring exposure and risk (and if so, what research even exists)? How do you stack human health and other metrics against each other and choose which factor outweighs the other? How do you account for performance and durability? The questions were endless and led to more questions, which I found complex and intriguing. In other topic areas like water and energy in buildings, the goal seemed straightforward (at least on the surface). Use less energy, and make it cleaner. Use less water, and make it cleaner. But with materials, the number of variables were infinite. We had to think about balancing not just toxicity to people and embodied carbon, but also harvesting of raw materials, ethical manufacturing, and what to do with all that stuff at the end of its useful life.

I ended up writing my MS thesis on methods for assessing sustainability at the level of the manufacturer, as opposed to focusing solely on individual products which change so frequently. I was really just trying to find a system map at a higher level, and make the big, shifting world of materials more manageable in my head. I still use some of what I learned during that project as  indicators of whether a building product manufacturer is serious about human health and sustainability, or just greenwashing. But sometimes they are greenwashing because they don’t know any better, and they are on their way to improving. So you can’t just write off smaller companies who don’t yet have all the documentation. It’s a learning process for them as well.

At MSR Design, the conversation about healthy materials had already started when I joined to work on The Rose, a Living Building-inspired affordable housing development in Minneapolis. My colleagues Rhys MacPherson, Paul Mellblom, and Rachelle Schoessler-Lynn were leading the conversation about why we should, and how we could, avoid vinyl and other chemicals on The Rose and on other projects across the firm. Over the next couple years we held a number of all-staff discussions and training sessions on healthy materials. Many staff members, from seasoned designers to interns, became interested in the question of how we could do better while still delivering a beautiful aesthetic and the best functionality for our clients. By the time we were ready to start designing our new studio, healthy materials as a concept had had enough time to become embedded in the culture

Tell us about your project to build the new MSR studio. Why was it important to prioritize healthy materials for this project? What went into your process?

When we knew we were moving, we held an all-staff discussion to debate frameworks for certification. We considered LEED, WELL, Fitwell, and Living Building Challenge Petal Certification. In the end, LBC won, because the Materials Petal was so ambitious, prioritizing not only human health through the use of Red List Free products, but also environmental health and other butterfly-effect impacts of resource harvesting and global warming potential and waste. At the same time, the LBC path included an emphasis on equity, as well as using the project as a tool to educate and inspire others. We found the holistic approach inspiring, and appreciated the challenge (most days).

It was important to prioritize healthy materials because we knew our staff cared about living out our values around healthy indoor environments. I think the team will agree that meeting the Red List requirement was difficult. It took time to develop a workflow for gathering the documentation. But it also gave us the opportunity to rethink the way we approach materials from the start of projects. Instead of trying to weed out all the “bad” chemistry, we found it was actually easier to start from scratch and build up a list of materials we knew were likely to comply with the requirement. It ended up being simpler, mostly natural materials, which we used as the palette for our space.

How do you consider low embodied carbon versus health in product selection?

Non-toxic materials and low embodied carbon are two lenses on a singular problem, which is planetary health. Human health is a subcategory of planetary health, since we’re part of the planet and made of its stuff. When indoor and outdoor environments, and plant and animal and human bodies, are polluted by toxic substances, both from human-made toxins and an overabundance of greenhouse gasses, the global ecosystem suffers and humans suffer within it. We are nature. What’s interesting is, younger, upcoming professionals and design students seem to understand this intuitively. They don’t even need to be told that human and global environmental health go hand in hand. So I think as an industry, we just need to accept the interplay of embodied carbon and human health as a foregone conclusion and get straight to the nitty-gritty of what materials we use and how those materials are grown, produced, manufactured and delivered.

That said, we also need to get serious about the data used to back up carbon and health claims. We need transparent, standardized reporting from manufacturers, including making sure the scope of every life cycle assessment (LCA) takes all the impact categories of the AIA Materials Pledge into account. I think petroleum-based building materials are going to be a battleground for a while to come. The low purchase price and saturation in the market make plastics seem like an easy choice for all kinds of different finishes and performance layers in buildings. It is possible to make them somewhat healthier for end-users by being careful to avoid certain additives. But that leaves a massive loophole; the impacts of production and waste on planetary health. I think there’s an opportunity for data to drive a new understanding here. If we can start seeing standardized collection and data crunching of environmental product declaration (EPD) data from different product sectors, we might be able to correlate carbon from building products more directly to regional health impacts of the production of those chemistries. This would help close loopholes that allow the incredible health impact of high global warming potential (GWP) emissions to stay hidden in the shadows

How have you used your knowledge to help move your clients toward healthier materials? What has been most successful?

I think some of my most successful work has been in addressing priorities and processes in our workflow. I can’t count the number of times I’ve heard people say they just wish there was a single, simple database of all the great products. There are ever-improving databases out there, but people always want something else that is missing, so the problem hasn’t been solved. I think the missing piece is a deeper understanding of the principles of product categories, such as knowing what different types–not brands, but general types–of insulation or countertop materials are made of, and where they come from. This level of knowledge, over time, becomes a kind of intuition one uses to filter the world of products even as new things constantly appear in your inbox or your lunch and learns. When you understand the principles, and don’t just rely on a database to provide a solution, it also gets easier to speak knowledgeably and make solid recommendations to clients.

On project work, I have the best luck when I’m upfront about why we need to consider material health alongside cost. You have to tailor your message to the audience, for example, some clients are most receptive to the idea of improving their impact on the world, whereas for others, the message that hits home is one of directly affecting their health or the health of people they care about

How has Habitable’s InformedTM building product research been helpful or influential?

I love InformedTMand recommend it to designers all the time, and clients too. The information is organized in terms of product categories as opposed to brand names or labels, so it aligns with the level of learning that I think is most beneficial to becoming smarter in practice. We used the sample specs to rewrite our paint specifications in 2021. We’ve also heard great lectures from Habitable research team members over the years that have left an impact on our staff. 

What advice do you have for other AEC leaders? Are there processes or approaches you would recommend? Where would you recommend a newcomer to healthier materials start?

For designers, I recommend signing the AIA Materials Pledge and studying the categories. The Pledge is a great framework – if you address each of the Pledge categories in some way, you know you’re hitting the right bases. If you can, allot some time to staff education and discussion. I recommend the Living Building Challenge Materials Petal as a particularly inspiring framework for education and good discussion, because it is based on absolute goals, instead of relative improvement. The COTE Super Spreadsheet (downloadable on the AIA website) is a good starting point for addressing materials issues in an applied manner on projects. 

At MSR Design, our internal education efforts led to the development of our Material Library Entry Criteria. If others want to design similar criteria for their libraries, they are welcome to copy ours outright or modify as needed: www.msrdesign.com/generative-impacts

The more we as designers align in our message to manufacturers about health and carbon, the easier it becomes for them to stay in business while giving us what we want

What are you most excited about right now?

I’m excited about natural and biobased materials. On the high-tech side, there is so much opportunity for new materials to be developed, especially bio-based polymers. On the other hand, there is a new straw bale project that is being built in Minneapolis. It’s low tech in comparison to the latest research in biomaterials, and yet it combines healthy, natural materials seamlessly with low carbon construction. The team is using Passive House building science principles to build a durable system, which they will test with sensors in the walls over the next few years. I really resonate with the idea that we can build a sustainable future with natural materials in both high- and low-tech ways

What do you want other people to know?

We, as an industry, are practicing architecture and construction in an era where buildings are made of hybrid material systems so complex, we hardly know what’s in them or why they work. I think we architects can perhaps find evidence of the Vitruvian virtues of utilitas (utility) and venustas (beauty) in the work we produce, but somewhere as a profession, I think we have let go of the firmitas (stability). Not in the sense of solid structure, but in the sense of owning materiality and material knowledge as a critical aspect of an architect’s role. We have become accustomed to accepting a level of vagueness about assemblies and their tons of little components, and leaving the details to the product manufacturer. I think understanding materials deeply is about reclaiming this knowledge, and a piece of architecture we have lost

Thank you to Simona and MSR design for being leaders in healthier materials! To learn more about the MSR headquarters project, check out this case study. You can also learn more about MSR’s commitment to sustainable design and download their Sustainable Materials Action Packet on their website. Follow this link to learn more about InformedTM, product guidance which Simona mentions influencing her practice.

What do building materials have to do with social justice? Learn more in this article by Diana Alley, Avideh Haghighi, and Lona Rerickat at ZGF Architects.

PFAS are used in paints, food packaging and even cosmetics. We know they are in our water, air, soil and bodies – but less about how they will affect us.

Health Care Without Harm Europe advocates for the complete elimination of PVC due to its environmental impact, urging policymakers to develop a strategy for its phase-out in Europe.

Healthy Building Network (HBN) and 100+ organizations stand united behind the new Louisville Charter for Safer Chemicals, a roadmap for transforming the chemical industry to one that is no longer a source of greenhouse gas emissions and significant human and environmental health harms.

The goal of the updated charter is to protect human health and the environment and achieve environmental justice for all who experience disproportionate impacts from cumulative chemical sources, including people of color, low-income people, Tribes and Native/Indigenous communities, women, children, and farmworkers.

The original Charter was created in 2004; at that time, HBN joined a broad coalition of grassroots, labor, health, and environmental justice groups in an extensive process initiated by community organizations in Louisville, KY. Louisville’s “Rubbertown” area hosted 11 industrial facilities that released millions of pounds of toxic air emissions every year. The Charter was named in honor of this city and all of the communities across the nation exposed to toxic chemical contamination—starting with the people who are harmed first and worst. We participated in the 2021 update process, supporting the efforts of the most heavily impacted communities to more explicitly address the chemical industry’s massive contribution to the climate crisis, and the need to advance environmental justice in communities who are disproportionately impacted.

The Louisville Charter is a unifying guide for everyone working to ensure that toxic chemicals are no longer a source of harm, from local and national policy-makers and labor organizers, to health care workers and concerned community members, to committed leaders in the building industry. It is meant to be versatile and used in a wide variety of contexts for one overarching purpose: to overhaul chemical policies in favor of safety, health, equity, and justice, and avoid false solutions that simply shift harms to other people and places.

HBN is proud to be a signatory of the Charter and join this diverse and intersectional community of partners  demanding urgent action to protect, strengthen, and restore our most vulnerable communities.

To learn more about the Louisville Charter for Safer Chemicals and its ten platform planks, visit www.louisvillecharter.org.

If you’re reading this article, you’ve probably begun your journey in understanding the impacts that building materials can have on human health and the environment. But it can feel daunting to know where to start applying this knowledge to your work. You may feel like you don’t have the time or budget to select materials that are free of hazardous chemicals.

Fortunately, there are some relatively simple, low- or no-cost ways to start incorporating healthier materials into your projects right away. By focusing on a few high-impact product categories with readily available healthier products, you can begin the process of preferring and specifying healthier materials without making significant changes to your bottom line.

Healthier materials don’t always cost more.

Assuming that healthier materials always cost more is a common misconception that often stops healthier material initiatives from even being discussed. Here are a few things you can do to start your journey without impacting your budget.

Paints
Paint is one of the easiest categories to start with, as healthier alternatives are readily available with no cost premium. Most paints today have Low or Zero VOC content and emissions and that are free of the endocrine-disrupting chemical APEs (Alkylphenol Ethoxylates), which are also toxic to fish and other aquatic organisms. “Endocrine disrupting” is a fancy way of saying they mimic hormones and send false signals, which cause problems in humans, and are especially problematic to children whose internal systems are nascent and developing. 

Carpets
Avoid the use of carpets with stain repellents or stain treatments. PFAS is the chemical name often cited as a worst-in-class stain and water repellent chemical, and in performance testing, it often falls short of the job it is purported to do and instead, it rubs off and enters our bodies. 

Insulation
Whenever possible, avoid the use of spray foam insulation, which is reacted onsite and can expose installers and building occupants to hazardous ingredients that can cause asthma. Prefer fiberglass, formaldehyde-free mineral wood, or cellulose insulation. 

Use our InformedTM product guidance to quickly and easily find healthier products. 

Antimicrobials
Avoid building products marketed as “antimicrobial” or “containing antibacterials” or similar claims. Some products on the market today include antimicrobials that are added for the purpose of making marketing claims around a product’s potential health benefits. However, there is no evidence that these added chemicals improve human health, and ironically, they can cause harm.

Tips to keep costs low.

When looking at costs, there are a few strategies you can engage to tip the scales in your favor.

Start early in the design process
Consider the use of safer materials early in the design. Late design changes can increase the cost of your project and impose technical constraints that limit opportunities for incorporating certain types of materials. If cost remains a barrier, make sure to include safer materials as an alternate option in your specifications in case that funds become available later in the project.

Leverage purchasing power
By simplifying your material pallet and buying in volume, you may be able to secure better pricing for a healthier product across your organization’s entire portfolio. You can also leverage collective purchasing power by working together with other organizations via affordable housing collectives and associations like the Housing Partnership Network (HPN).

Save by cutting waste
Revisit your design process and emphasize waste minimization. For example, design a floor plan that minimizes cut off waste of your chosen flooring material. The savings you generate can be allocated to the purchasing of healthier materials.

With all this said, the reality is that sometimes safer materials do have a higher upfront cost. However, we hope this article has demonstrated that it’s possible to start prioritizing healthier materials no matter your budget or project size! Together we can all take steps toward a day where all people and the planet thrive in an environment free of hazardous chemicals.

In this article, we aim to expand your thinking about the cost of materials to account for the costs borne by individuals and fenceline communities who are exposed to toxic chemicals every day. The bottom line is that some products can be sold cheaply because someone else is carrying the burden of the true cost.

Where We Are

When you shop for a flooring product, what do you consider? Perhaps you think about the look and feel of the product and its durability. You likely also consider the price. The cost of using a material is influenced by the cost to purchase the product itself, the installation cost, maintenance costs, as well as how long the product will last (when you will have to pay to replace it). These are all internalized costs, paid by the building owner. 

These costs alone, however, do not consider the full impacts of materials along their life cycles.  More and more building industry professionals are paying attention to the content of building products and working to avoid hazardous chemicals in an effort to help protect building occupants and installers from health impacts following chemical exposures. To understand the true, full cost of a product, we must look beyond just the monetary cost of purchasing and maintaining a product.

Hidden Costs

Many of the costs associated with products are more or less hidden when choosing a building material. Just a few of these hidden costs are outlined below.

  1. Toxic Chemical Impacts on Human Health: This includes direct medical expenses due to diseases caused or exacerbated by chemical exposures, as well as indirect health-related costs like loss of productivity in work or school and decreased economic productivity in terms of loss of years of life and loss of IQ points. It also includes the immeasurable costs to quality of life and loss of loved ones.
  2. Environmental Contamination Costs: Contamination of the environment with toxic chemicals contributes to the human health impacts noted above. In addition, the costs of environmental contamination can include reduced property values in and around contaminated areas, loss of income and food production from the contamination of farms, and the cost of clean up activities (e.g. utilities clean up of water contamination). Less quantifiable costs include damage to wildlife and ecosystems.
  3. Climate Change Impacts: Production of chemicals and products is often energy-intensive and based on fossil fuels. Most products contribute to climate change to some extent. Some contribute more than others because of energy use or the release of chemicals with high global warming potential. These greenhouse gas emissions exacerbate climate change, leading to increasingly powerful storms and fires, with increasingly high and recurring costs for recovery. Climate change also magnifies the impacts of toxic chemicals, increasing the human and environmental health costs. 
  4. Environmental Injustice: Disproportionately, the health impacts and associated costs throughout the life cycle of products (e.g. during manufacturing and at end of life) fall on  communities of color and low-income communities. The numerical cost of these impacts may not be quantifiable, but the costs to our society are no less clear as a result.

Some Numbers

Quantifying the estimated costs of these impacts is challenging. In most cases, there is just not enough data to estimate the full costs of hazardous chemical impacts. Below are examples of estimated direct and indirect costs of some toxic chemicals to society.

Toxic Chemical Impacts on Human Health
The US Occupational Safety & Health Administration (OSHA) estimates that American workers alone suffer more than 190,000 illnesses and 50,000 deaths per year that are related to chemical exposures. These chemical exposures are tied to cancers, as well as other lung, kidney, heart, stomach, brain, and reproductive diseases.1

While some workers may see greater exposures to hazardous chemicals, all of us are impacted. Many of you are likely familiar with PFAS, aka per- and polyfluoroalkyl substances. PFAS have been used in a wide range of applications, including stain-repellent treatments for carpet and countertop sealers. The widespread use of PFAS has led to extensive contamination of the planet and people. Increasing research and attention to this group of chemicals has led to some quantitative understanding of the costs to society of their use. A recent publication in Environmental Science and Technology outlined some of the true costs of PFAS chemicals. The authors highlight that, “A recent analysis of impacts from PFAS exposure in Europe identified annual direct healthcare expenditures at €52–84 billion. Equivalent health-related costs for the United States, accounting for population size and exchange rate differences, would be $37–59 billion annually.” Importantly, they further call out the fact that, “These costs are not paid by the polluter; they are borne by ordinary people, health care providers, and taxpayers.”2

And this is just the cost of one group of chemicals. Another recent study estimated the cost of US exposures to phthalates, a group of chemicals used to make plastics more flexible, to be approximately $40 billion or more due to loss of economic activity from premature deaths.3 While more research is needed, the scale of these estimated costs is staggering.

Environmental Contamination Costs
The release of PFAS chemicals has contaminated water supplies globally. About two-thirds of the US population receives municipal drinking water that is contaminated with PFAS. Reducing the levels of PFAS in drinking water can be expensive, and none of the methods fully remove PFAS. In the Environmental Science and Technology study mentioned above, the authors note that “following extensive contamination by a PFAS manufacturer in the Cape Fear River watershed, Brunswick County, North Carolina is spending $167.3 million on a reverse osmosis plant and the Cape Fear Public Utility Authority spent $46 million on granular activated carbon filters, with recurring annual costs of $2.9 million. Orange County, California estimates that the infrastructure needed to lower the levels of PFAS in its drinking water to the state’s recommended levels will cost at least $1 billion.” Again, these costs are typically not paid by the polluter but shifted to the public.4

Climate Change Impacts
Chemicals used in the production of some PFAS are ozone depleters and potent greenhouse gases. New research released in September by Toxic-Free Future, Safer Chemicals Healthy Families, and Mind the Store ties the release of one such chemical, HCFC-22, to the production of PFAS used in food packaging. The reported releases of this one chemical from a single facility is equivalent to “emissions from driving 125,000 passenger cars for a year.”5

The costs of climate change impacts are immense. For example, the number of billion-dollar disasters and the total cost of damages due to natural disasters have been skyrocketing. The National Oceanic and Atmospheric Administration describes how climate change contributes to increasing frequency of some extreme weather events with billion-dollar impacts. They outline the broader context of these extreme weather events saying that, “the total cost of U.S. billion-dollar disasters over the last 5 years (2016-2020) exceeds $600 billion, with a 5-year annual cost average of $121.3 billion, both of which are new records. The U.S. billion-dollar disaster damage costs over the last 10-years (2011-2020) were also historically large: at least $890 billion from 135 separate billion-dollar events. Moreover, the losses over the most recent 15 years (2006-2020) are $1.036 trillion in damages from 173 separate billion-dollar disaster events.”6

Figure 1. Billion-dollar Disasters and Costs (1980-2020)7

Environmental Injustice
In the US, communities of color and low-income communities are disproportionately impacted by environmental pollutants.8 These communities often face hazardous releases from multiple sources due to high concentrations of manufacturing facilities near their homes. The area along the Mississippi River between New Orleans and Baton Rouge is known as “Cancer Alley” because of the concentration of industrial activity and the associated elevated cancer risks.9 Figure 2 maps facilities that report to EPA’s Toxics Release Inventory (TRI) in this area. These are facilities that release or manage hazardous chemicals that require reporting to EPA.  

The city of Geismar, LA is home to 18 TRI facilities. These facilities reported a total of over 15 million pounds of on-site releases of hazardous chemicals to air, water, and land in 2019.10 Several of these facilities produce chemicals used in the building product supply chain. Two facilities produce chlorine for internal or external production of PVC, which can be used to make pipes, siding, windows, flooring, and other building products.11 Two other facilities manufacture a key ingredient of spray foam insulation, MDI. Some of these facilities have a history of noncompliance with EPA regulations, one having significant violations for eight of the last twelve quarters and another having significant violations for all twelve of the last twelve quarters.12 Surrounding communities are impacted by regular toxic releases from these facilities and are vulnerable to accidents involving toxic chemicals. For example, an explosion and fire at the vinyl plant in 2012 released thousands of pounds of toxic chemicals, led to a community shelter in place order, and shut down roads and a section of the Mississippi River.13

More than 5,000 people live within three miles of one or more of these four facilities. This community is disproportionately Black — 35% of the population compared to 12% in the US overall. Thirty percent of the population is children, with about 1500 kids under the age of 18. This community has a higher estimated risk of cancer from toxics in the air than most places in the US — almost four times the national average.14

Where we go from here?

The message we hope you take away from this article is that we must move beyond discussions based purely on the material costs or up-front costs of products. We must all work together to acknowledge and shed light on the true costs that toxic chemicals have within our society and on specific communities. The impacts of hazardous chemicals are, of course, not just monetary –people’s lives are significantly impacted in multiple ways. The current system subsidizes cheap products by robbing individuals of the opportunity for healthy lives and for children to play, and grow up, and enjoy a full and normal life.

Unfortunately, there is not currently enough information available to make detailed cost accounting broadly possible, and no framework exists for accounting for and comparing the full extent of product costs. Transparency about what is in a product, how the product is made, and hazardous emissions – beyond those required to be reported by law – is critical. Programs that place extended responsibility on manufacturers to manage materials at their end of life (as part of extended producer responsibility or EPR)15 can be a starting point for conversations about the full life cycle impacts of products and can help hold manufacturers accountable for a broader array of costs, once they are better understood.

In the meantime, Habitable works to incorporate a life cycle chemical perspective into our safer material recommendations like our Informed™ product guidance and Pharos database. These tools are a work in progress initially focused on avoiding hazardous chemicals in a product’s content. As a starting point, this helps protect not only building occupants and installers, but also others impacted by those hazardous chemicals throughout the supply chain. When hazardous chemicals are used, it is likely that someone throughout the supply chain is impacted. Informed™ can help you choose safer building products based on the information that we have today as we work to expand our incorporation of life cycle chemical impacts into our research and to provide guidance on a broader range of materials.

Habitable looks forward to continuing to identify and provide the critical data needed  to assist in decision making with a more comprehensive view of the true costs of materials, and to developing resources to help communicate the collective return on investment seen by a society where all people and the planet thrive.

SOURCES

  1. Occupational Safety and Health Administration. “Transitioning to Safer Chemicals: A Toolkit for Employers and Workers.” Accessed October 21, 2021. https://www.osha.gov/safer-chemicals
  2. Cordner, Alissa, Gretta Goldenman, Linda S. Birnbaum, Phil Brown, Mark F. Miller, Rosie Mueller, Sharyle Patton, Derrick H. Salvatore, and Leonardo Trasande. “The True Cost of PFAS and the Benefits of Acting Now.” Environmental Science & Technology 55, no. 14 (July 20, 2021): 9630–33. https://doi.org/10.1021/acs.est.1c03565.The original study’s authors note that because data is only available for a few health endpoints and that these costs are likely a minimum health-related cost. See: Goldenman, Gretta, Meena Fernandes, Michael Holland, Tugce Tugran, Amanda Nordin, Cindy Schoumacher, and Alicia McNeill. “The Cost of Inaction : A Socioeconomic Analysis of Environmental and Health Impacts Linked to Exposure to PFAS.” Nordisk Ministerråd, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:norden:org:diva-5514.
  3. Trasande, Leonardo, Buyun Liu, and Wei Bao. “Phthalates and Attributable Mortality: A Population-Based Longitudinal Cohort Study and Cost Analysis.” Environmental Pollution, October 12, 2021, 118021. https://doi.org/10.1016/j.envpol.2021.118021.; Guzman, Joseph. “Shocking Study Says Chemicals Found in Shampoo, Makeup May Kill 100k Americans Prematurely Each Year.” The Hill, October 12, 2021. https://thehill.com/changing-america/well-being/576436-shocking-study-says-chemicals-found-in-shampoo-and-makeup-may.
  4. Cordner, Alissa, Gretta Goldenman, Linda S. Birnbaum, Phil Brown, Mark F. Miller, Rosie Mueller, Sharyle Patton, Derrick H. Salvatore, and Leonardo Trasande. “Correction to The True Cost of PFAS and the Benefits of Acting Now.” Environmental Science & Technology 55, no. 18 (September 21, 2021): 12739–12739. https://doi.org/10.1021/acs.est.1c04938.
  5. Schreder, Erika, and Beth Kemler. “Path of Toxic Pollution.” Toxic-Free Future, Safer Chemicals Healthy Families, and Mind the Store, September 2021. https://toxicfreefuture.org/daikin-path-of-toxic-pollution.
  6. Smith, Adam B. “2020 U.S. Billion-Dollar Weather and Climate Disasters in Historical Context.” NOAA Climate.gov, January 8, 2021. https://www.climate.gov/news-features/blogs/beyond-data/2020-us-billion-dollar-weather-and-climate-disasters-historical.
  7. Smith, Adam B. “2020 U.S. Billion-Dollar Weather and Climate Disasters in Historical Context.” NOAA Climate.gov, January 8, 2021. https://www.climate.gov/news-features/blogs/beyond-data/2020-us-billion-dollar-weather-and-climate-disasters-historical.
  8. Bell Michelle L. and Ebisu Keita, “Environmental Inequality in Exposures to Airborne Particulate Matter Components in the United States,” Environmental Health Perspectives 120, no. 12 (December 1, 2012): 1699–1704, https://doi.org/10.1289/ehp.1205201; Michael Gochfeld and Joanna Burger, “Disproportionate Exposures in Environmental Justice and Other Populations: The Importance of Outliers,” American Journal of Public Health 101, no. Suppl 1 (December 2011): S53–63, https://doi.org/10.2105/AJPH.2011.300121; “Volume 1: Workgroup Report to Administrator,” Environmental Equality: Reducing Risk for All Communities (United States Environmental Protection Agency, June 1992), https://www.epa.gov/sites/production/files/2015-02/documents/reducing_risk_com_vol1.pdf.
  9. Tristan Baurick, Lylla Younes, and Joan Meiners, “Welcome to ‘Cancer Alley,’ Where Toxic Air Is About to Get Worse,” ProPublica, October 30, 2019, https://www.propublica.org/article/welcome-to-cancer-alley-where-toxic-air-is-about-to-get-worse; James Pasley, “Inside Louisiana’s Horrifying ‘Cancer Alley,’ an 85-Mile Stretch of Pollution and Environmental Racism That’s Now Dealing with Some of the Highest Coronavirus Death Rates in the Country,” Business Insider, April 9, 2020, https://www.businessinsider.com/louisiana-cancer-alley-photos-oil-refineries-chemicals-pollution-2019-11.
  10. Data collected from US EPA’s TRI database by searching by city: https://www.epa.gov/toxics-release-inventory-tri-program.
  11. Vallette, Jim. “Chlorine and Building Materials: A Global Inventory of Production Technologies, Markets, and Pollution – Phase 1: Africa, The Americas, and Europe.” Healthy Building Network, July 2018. https://habitablefuture.org/resources/chlorine-building-materials-project-phase-1-africa-the-americas-and-europe/.
  12. ECHO. “Detailed Facility Report: BASF Corp.” Data & Tools. Accessed October 21, 2021. https://echo.epa.gov/detailed-facility-report?fid=110000597364.; ECHO. “Detailed Facility Report: Occidental Chemical Corporation.” Data & Tools. Accessed October 21, 2021. https://echo.epa.gov/detailed-facility-report?fid=110000449774.; ECHO. “Detailed Facility Report: Rubicon LLC.” Data & Tools. Accessed October 21, 2021. https://echo.epa.gov/detailed-facility-report?fid=110000597373.; ECHO. “Detailed Facility Report: Westlake Vinyls Co.” Data & Tools. Accessed October 21, 2021. https://echo.epa.gov/detailed-facility-report?fid=110000746328.
  13. Schade, Mike. “(Yet) Another PVC Plant Explosion and Fire.” Center for Health, Environment & Justice (CHEJ), 2012. http://chej.org/2012/04/16/yet-another-pvc-plant-explosion-and-fire.
  14. Data is from US EPA’s EJScreen: https://ejscreen.epa.gov/mapper. Population and demographic information is based on a 3-mile radius around the four facilities combined – Rubicon, Occidental Chemical, BASF, and Westlake Vinyls (location based on latitude and longitude per the Toxic Release Inventory). NATA Air Toxics Cancer Risk is in the 95-100th percentile for the United States.
  15. OECD defines Extended Producer Responsibility as “a concept where manufacturers and importers of products should bear a significant degree of responsibility for the environmental impacts of their products throughout the product life-cycle, including upstream impacts inherent in the selection of materials for the products, impacts from manufacturers’ production process itself, and downstream impacts from the use and disposal of the products.” See: ​​OECD. “Fact Sheet: Extended Producer Responsibility.” Accessed October 21, 2021. https://www.oecd.org/env/waste/factsheetextendedproducerresponsibility.htm.

Plastic is a ubiquitous part of our everyday lives, and its global production is expected to more than triple between now and 2050. According to industry projections, we will create more plastics in the next 25 years than have been produced in the history of the world so far.

The building and construction industry is the second largest use sector for plastics after packaging.1 From water infrastructure to roofing membranes, carpet tiles to resilient flooring, and insulation to interior paints, plastics are ubiquitous in the built environment. 

These plastic materials are made from oil and gas. And, due to energy efficiency improvements, for example–in building operations and transportation–the production and use of plastics is predicted to soon be the largest driver of world oil demand.2

Plastic building products are often marketed in ways that give the illusion of progress toward an ill-defined future state of plastics sustainability. For the past 20 years, much of that marketing has focused on recycling. But for a variety of reasons, these programs have failed.

A recent study from the University of Michigan makes it clear that the scale of post-consumer plastics recycling in the US is dismal.3 Only about 8% of plastic is recycled, and virtually all of that is beverage containers. Further, most of the recyclate is downcycled into products of lower quality and value that themselves are not recyclable. For plastic building materials, the numbers are more dismal still. For example, carpet, which claims to have one of the more advanced recycling programs, is recycled at only a 5% rate, and only 0.45% of discarded carpet is recycled into new carpet. The rest is downcycled into other materials, which means their next go-around these materials are destined to be landfilled or burned.4 After 20 years of recycling hype, post-consumer recycling of plastic building materials into products of greater or equal value is essentially non-existent, and therefore incompatible with a circular economy.

Why isn’t plastic from building materials recycled?

Additives (which may be toxic), fillers, adhesives used in installation, and products made with multiple layers of different types of materials all make recycling of plastic building materials technically difficult. Lack of infrastructure to collect, sort, and recycle these materials contributes to the challenge of recycling building materials into high-value, safe new materials.

Manufacturers have continued to invest in products that are technically challenging to reuse or recycle – initially cheaper due to existing infrastructure – instead of innovating in new, circular-focused solutions. Additionally, their investment in plastics recycling has been paltry. In 2019 BASF, Dow, ExxonMobill, Shell and numerous other manufacturers formed the Alliance to End Plastic Waste (AEPW) and pledged to invest $1.5 billion over the next five years into research and development of plastic waste management technologies. Compare that to the over $180 billion invested by these same firms in new plastic manufacturing facilities since 2010.5

Globally, regulations that discourage or ban landfilling of plastics have, unfortunately, not led to more recycling overall. Instead, burning takes the place of landfilling as the eventual end of life for most plastics.

Confusing rhetoric around plastic end of life options can make this story seem more complicated than it is.6 

  • “incineration” or “waste to energy” burns plastic for energy.
  • “Plastic-to-fuel” or “gasification” or “pyrolysis” generates fuel. This output is rarely used for anything but burning due to the additional processing required to use for any other purpose.
  • “Chemical recycling” could, in theory, lead to new plastic products. This technology is unproven and currently not a scalable solution. The outputs are often burned due to low quality.

Plastic waste burning, regardless of the euphemism employed, is a well established environmental health and justice concern.

Burning plastics creates global pollution and has environmental justice impacts.

In its exhaustive 2019 report, the independent, nonprofit Center for International Environmental Law (CEIL) documents how burning plastic wastes increases unhealthy toxic exposures at every stage of the process. Increased truck traffic elevates air pollution, as do the emissions from the burner itself. Burned plastic produces toxic ash and residue at approximately one fifth the volume of the original waste, creating new disposal challenges and new vectors of exposure to additional communities that receive these wastes.7

In the US, eight out of every 10 solid waste incinerators are located in low-income neighborhoods and/or communities of color.8 This means, in some cases, the same communities that are disproportionately burdened with the pollution and toxic chemical releases related to the manufacture of virgin plastics are again burdened with its carbon and chemical releases when it is inevitably burned at the end of its life.

The issue is global in scale. A recent report by the United Nations Environment Program (UNEP) found that “plastic waste incineration has resulted in disproportionately dangerous impacts in Global South countries and communities.” The Global Alliance for Incineration Alternatives (GAIA), a worldwide alliance of more than 800 groups in over 90 countries, has been working for more than 20 years to defeat efforts to massively expand incineration, especially in the Global South. GAIA members have identified incineration not only as an immediate and significant health threat in their communities, but also a major obstacle to resource conservation, sustainable economic development, and environmental justice.

Where do we go from here?

  1. Minimize production of virgin plastic. This should be the main focus of any plastic waste reduction plan and part of any comprehensive climate change initiative. Policies banning single use plastics or banning the construction of new plastic production facilities or facility expansions are two example solutions cited by GAIA.9 Less plastic means less waste and less material to incinerate. 
  2. Invest in true circular economy initiatives. These may include, for example: extended producer responsibility programs, materials passports, materials disclosure, elimination of toxic chemical additives, product as a service models, and recycling facilities that support upcycling. By shifting industry investments toward circular economy infrastructure  – instead of the nearly $200 billion investments in increased manufacturing and burning capacity – the plastic industry could start to be part of the solution of reducing plastic waste.
  3. When evaluating the “expense” of recycling and circularity vs business-as-usual, a fair calculation for the latter needs to include all costs associated with the production, use, and end of life impacts of plastics. That “cheap” vinyl floor is no longer so inexpensive when the full costs of global pollution and the health burdens of people of color and low income communities are included in the math. Externalities must be a part of the equation.

What is unquestionable is this: Today our only choices for plastic waste are to burn or landfill most of it. Expanding plastics production and incineration is a conscious decision to perpetuate well documented, fully understood inequity and injustice in our building products supply chain.

The folks at The Story of Stuff cover this in The Story of Plastics, four minute animated short suitable for the whole family.  Comedian John Oliver tells the “R-rated” version of the story with impeccable research and insightful humor in his HBO show Last Week Tonight. It’s worth a look to learn exactly how the plastics industry uses the illusion of recycling to sell ever increasing volumes of plastic. Without manufacturer responsibility and investment, efforts to truly incorporate plastic into a circular economy have little chance of success.

In Louisiana, the factories that make the chemicals and plastics for our building products are built literally upon the bones of African Americans. Plantation fields have been transformed into industrial fortresses.

A Shell Refinery1 sprawls across the former Bruslie and Monroe plantations. Belle Pointe is now the DuPont Pontchartrain Works, among the most toxic air polluters in the state.2 Soon, the Taiwan-based Formosa Plastics Group intends to build a 2400-acre complex of 14 facilities that will transform fracked gas into plastics. It will occupy land that was formerly the Acadia and Buena Vista plantations, and not incidentally, the ancestral burial grounds of local African American residents, some of whom trace their lineage back to people enslaved there.3 

Formosa has earned a reputation of being a poor steward of sacred places. Local residents have petitioned the Governor to deny permits for the facility, citing a long list of environmental health violations in its existing Louisiana facilities, including violations of the Clean Air Act every quarter since 2009.4 The scofflaw company was found to have dumped plastic pellets known as “nurdles” into the fragile ecosystem of Lavaca Bay on the Gulf of Mexico for years – leading to a record $50 million settlement with activists in that community in 2019.5  

In the Antebellum South, formerly enslaved people often homesteaded on lands that were part of or near the plantations they once worked. They established communities of priceless historical and cultural worth, towns such as Morrisonville, Diamond, Convent, Donaldsonville, and St. James. Donaldsonville, Louisiana, is the town that elected Pierre Caliste Landry, America’s first African American mayor in 1868, just three years after the end of the Civil War. This part of Louisiana holds many layers of complex and deep African American history.

But in the last 75 years, since World War II, these communities have been overrun by petrochemical industry expansion enabled by governments wielding the clout of Jim Crow laws to snuff out any opposition or objection. Towns like Morrisonville and Diamond have been bought up to accommodate plant expansion. Residents have been forced to move out, their history and heritage literally paved over. It wasn’t until 1994 that the River Road African American Museum was established to preserve and present the history of the Black population as distinct from plantation representations of slavery.  According to Michael Taylor, Curator of Books, Louisiana State University Libraries: “Only in the last few decades have historians themselves begun to appreciate the complexity of free black communities and their significance to our understanding not just of the past, but also the present.”6

Charting a New Way Forward—Together

Virtually every building product we use today contains a petrochemical component that originates from heavily polluted communities, frequently home to people of color. As the green building movement searches for ways to enhance diversity, inclusion and equity, how might it address the legacies of injustice that are tied to the products and materials we use every day?

Architect, Zena Howard, FAIA, offered insight in her 2019 J. Max Bond Lecture, Planning to Stay, keynoting the National Organization of Minority Architects national conference. Howard, known for her work on the design team for the breathtaking Smithsonian National Museum of African American History and Culture, most often works with people in communities whose culture and heritage were “erased” by urban renewal in the 1960’s. In Greenville, North Carolina, she looked to people from the historically African American Downtown Greenville community and Sycamore Hill Missionary Baptist Church Congregation to guide the planning and design process for a new town common and gateway plaza. The goal was not to “replicate” the lost community, but to bring its history and present day aspirations to life in the new design. In Vancouver, British Columbia, the development plan for a neighborhood founded by African Canadian railroad porters included an unprecedented chapter on “reconciliation and cultural redress.” The key to such efforts, according to Howard is co-creation and meaningful collaboration, whose Greek roots, she notes, mean “to labor together.”

How might we labor together to address environmental injustice when evaluating the overall healthfulness and equity of our building materials? The precedent of “insetting” suggests an approach.

Insetting has been pioneered by companies whose supply chains rely upon agricultural communities across the globe. According to Ceres, insetting is “a type of carbon emissions offset, but it’s about much more than sequestering carbon: It’s also about companies building resiliency in their supply chains and restoring the ecosystems on which their growers depend.” 

In previous columns, I’ve addressed concerns about the social in industrial communities, e.g., proposals that perpetuate disproportionate pollution impacts when buying offsets rather than addressing emissions from a specific facility. Applying the “insetting” approach we might ask our materials manufacturers—and the communities that are home to the building materials industries—what steps can we take to encourage manufacturers to “labor with” communities seeking environmental justice, such as those along the Mississippi River? Can we, together, resurrect and restore their history, reconcile and redress historical wrongs, and build a healthier future for all?

Black History
Month Readings

To learn more about the history and present day conditions of Cancer Alley, see these excellent articles from The Guardian and Pro Publica: https://www.ehn.org/search/?q=cancer+alley

You can watch to Zena Howard’s J. Max Bond lecture, Planning to Stay, here: https://vimeo.com/378622662

You can learn more about the River Road African American History Museum here: https://africanamericanmuseum.org/

SOURCES

  1. Terry L. Jones, “Graves of 1,000 Enslaved People Found near Ascension Refinery; Shell, Preservationists to Honor Them | Ascension | Theadvocate.Com,” accessed February 18, 2020, https://www.theadvocate.com/baton_rouge/news/communities/ascension/article_18c62526-2611-11e8-9aec-d71a6bbc9b0c.html.
  2. Oliver Laughland and Jamiles Lartey, “First Slavery, Then a Chemical Plant and Cancer Deaths: One Town’s Brutal History,” The Guardian, May 6, 2019, sec. US news, https://www.theguardian.com/us-news/2019/may/06/cancertown-louisiana-reserve-history-slavery.
  3. Sharon Lerner, “New Chemical Complex Would Displace Suspected Slave Burial Ground in Louisiana’s ‘Cancer Alley,’” The Intercept (blog), December 18, 2019, https://theintercept.com/2019/12/18/formosa-plastics-louisiana-slave-burial-ground/.
  4. Louisiana Bucket Brigade, “Sign the Petition,” Change.org, accessed February 25, 2020, https://www.change.org/p/governor-edwards-stop-the-formosa-chemical-plant.
  5. Stacy Fernández, “Plastic Company Set to Pay $50 Million Settlement in Water Pollution Suit Brought on by Texas Residents,” The Texas Tribune, October 15, 2019, https://www.texastribune.org/2019/10/15/formosa-plastics-pay-50-million-texas-clean-water-act-lawsuit/.
  6. LSU Libraries, “Free People of Color in Louisiana,” LSU Libraries, accessed February 18, 2020, https://lib.lsu.edu/sites/all/files/sc/fpoc/history.html.

Download this resource:

* indicates required

Yes, I’d like to receive exclusive email updates.