Update! HEALTHY BUILDING NETWORK IS NOW HABITABLE.
Update! HEALTHY BUILDING NETWORK IS NOW HABITABLE.
Update! HEALTHY BUILDING NETWORK IS NOW HABITABLE.
Update! HEALTHY BUILDING NETWORK IS NOW HABITABLE.
Update! HEALTHY BUILDING NETWORK IS NOW HABITABLE.
Update! HEALTHY BUILDING NETWORK IS NOW HABITABLE.

Plastic pollution and climate change are interconnected threats that drive global social injustice, with the construction industry being a significant contributor due to its prolific use of plastics.

Recently, efforts to recycle or downcycle plastics into building materials have accelerated, leading to incorporation of plastic waste into materials such as composite asphalt-plastic roads, plastic adhesives, and plastic-concrete. However, research suggests these practices may exacerbate environmental, health, and social problems, acting as “greenwashing” that distracts from real solutions. This mini review evaluates the impacts of using plastic waste in construction materials and calls for caution and further research before widespread adoption. Read the full review to explore the evidence and recommendations in detail.

The American Chemistry Council promotes chemical recycling as a solution to plastic waste but this article highlights concerns raised by environmentalists about its efficacy and environmental impact, as well as the lobbying efforts to reclassify it as manufacturing in 24 states.

This article provides an overview of the global plastic waste crisis, highlighting the environmental impact of plastic pollution and the ongoing efforts by the UN to create a legally binding international agreement to address the issue.

This fact sheet highlights the urgent need to phase out the production and use of high-priority plastic polymers, chemical additives, and products that pose significant hazards to human health and the environment, in order to address the global plastics crisis.

This fact sheet provides an overview over plastic pollution at each life stage: from resource extraction all the way to removal and remediation.

This video describes why plastic ends up in the environment and the solutions needed to disrupt the unsustainable use of plastic by holding manufacturers accountable for the products they make.

This report discusses how President Biden’s Executive Orders need to go further than examining energy sources to combat the climate crisis, emphasizing the need for the chemical industry to adapt and innovate, considering its significant impact on greenhouse gas emissions and environmental health.

Health Care Without Harm Europe advocates for the complete elimination of PVC due to its environmental impact, urging policymakers to develop a strategy for its phase-out in Europe.

Have you ever seen a building product advertise that it contains recycled content and wondered what that material actually was and where it came from? We certainly have. Many building products advertise recycled content, but most often the identity and chemical makeup of the recycled material are not shared.

Using products that contain recycled content can be a great way to reduce environmental impacts and support a circular economy by keeping still-useful materials out of landfills and avoiding the impacts of manufacturing virgin materials. Unfortunately, some recycled materials contain toxic chemicals that come along for the ride when incorporated into new products. For example, 2015 testing of a range of vinyl floors found high levels of toxic lead and cadmium from recycled content in the inner layers of the floors.1

Defining recycled content
Recycled content is broadly broken down into pre-consumer and post-consumer materials. As defined by the U.S. Green Building Council2 : 

  • Post-consumer material is “waste material generated by households or by commercial, industrial, and institutional facilities in their role as end-users of the product, which can no longer be used for its intended purpose.” Some examples of post-consumer recycled material include glass bottles or vehicle tires.
  • Pre-consumer material is “material diverted from the waste stream during the manufacturing process.” This definition excludes reuse of scrap materials back into the same process. Some examples of pre-consumer recycled material include treated waste from coal fired power plants (such as fly ash used in carpets or FGD gypsum used in drywall) or waste wood fiber from a sawmill used in composite wood like medium density fiberboard (MDF).

Ensuring safer recycled materials
While some recycled feedstocks, such as sawdust and glass containers, can be safely recycled into new products, others contain legacy contaminants that can lead to toxic exposures when used in new products. To address the potential for toxic re-exposures from recycled materials, HBN worked  with green building standards such as LEED and Enterprise Green Communities to include credits that consider not just if a product contains recycled content, but also what that content is and if it has been screened for potential hazards. 

Enterprise Green Communities Criterion 6.2, Recycled Content and Ingredient Transparency, acknowledges that the need for content transparency applies to recycled content as well as virgin materials. It calls for using products that contain post-consumer recycled content where the origin of the recycled content is publicly disclosed along with information on how the recycled content is screened for or otherwise avoids heavy metals. 

Mind the data gap
Product manufacturers may not always have detailed content information available for the recycled materials they use. Supply chain tracking and internal screening requirements can help manufacturers ensure that the recycled materials they incorporate into new products don’t bring along hazardous contaminants. 

Building a Sustainable Future
Removing toxic chemicals from new products makes a commercial afterlife possible, supports a safe and circular economy, and minimizes negative human health impacts. Using materials that are recoverable at the end of their life and building  infrastructure to reuse or recycle them will lessen future impacts. Fully and transparently documenting product contents now also supports future recycling by identifying materials that may later be determined to be toxic. 

As a building material specifier, the next time you consider a product with recycled content, make sure to ask the manufacturer for full transparency of product content, including where that recycled content came from.

Together we can reduce human exposure and work towards a safe and circular economy.

SOURCES

  1. Vallette, Jim. “Post-Consumer Polyvinyl Chloride in Building Products.” Healthy Building Network, 2015. https://habitablefuture.org/wp-content/uploads/2024/03/90-post-consumer-polyvinyl-chloride-pvc-report.pdf.
  2. USGBC. “Building Product Disclosure and Optimization – Material Ingredients.” U.S. Green Building Council. Accessed January 27, 2021. https://www.usgbc.org/credits/new-construction-core-and-shell-schools-new-construction-retail-new-construction-healthca-24.

Plastic is a ubiquitous part of our everyday lives, and its global production is expected to more than triple between now and 2050. According to industry projections, we will create more plastics in the next 25 years than have been produced in the history of the world so far.

The building and construction industry is the second largest use sector for plastics after packaging.1 From water infrastructure to roofing membranes, carpet tiles to resilient flooring, and insulation to interior paints, plastics are ubiquitous in the built environment. 

These plastic materials are made from oil and gas. And, due to energy efficiency improvements, for example–in building operations and transportation–the production and use of plastics is predicted to soon be the largest driver of world oil demand.2

Plastic building products are often marketed in ways that give the illusion of progress toward an ill-defined future state of plastics sustainability. For the past 20 years, much of that marketing has focused on recycling. But for a variety of reasons, these programs have failed.

A recent study from the University of Michigan makes it clear that the scale of post-consumer plastics recycling in the US is dismal.3 Only about 8% of plastic is recycled, and virtually all of that is beverage containers. Further, most of the recyclate is downcycled into products of lower quality and value that themselves are not recyclable. For plastic building materials, the numbers are more dismal still. For example, carpet, which claims to have one of the more advanced recycling programs, is recycled at only a 5% rate, and only 0.45% of discarded carpet is recycled into new carpet. The rest is downcycled into other materials, which means their next go-around these materials are destined to be landfilled or burned.4 After 20 years of recycling hype, post-consumer recycling of plastic building materials into products of greater or equal value is essentially non-existent, and therefore incompatible with a circular economy.

Why isn’t plastic from building materials recycled?

Additives (which may be toxic), fillers, adhesives used in installation, and products made with multiple layers of different types of materials all make recycling of plastic building materials technically difficult. Lack of infrastructure to collect, sort, and recycle these materials contributes to the challenge of recycling building materials into high-value, safe new materials.

Manufacturers have continued to invest in products that are technically challenging to reuse or recycle – initially cheaper due to existing infrastructure – instead of innovating in new, circular-focused solutions. Additionally, their investment in plastics recycling has been paltry. In 2019 BASF, Dow, ExxonMobill, Shell and numerous other manufacturers formed the Alliance to End Plastic Waste (AEPW) and pledged to invest $1.5 billion over the next five years into research and development of plastic waste management technologies. Compare that to the over $180 billion invested by these same firms in new plastic manufacturing facilities since 2010.5

Globally, regulations that discourage or ban landfilling of plastics have, unfortunately, not led to more recycling overall. Instead, burning takes the place of landfilling as the eventual end of life for most plastics.

Confusing rhetoric around plastic end of life options can make this story seem more complicated than it is.6 

  • “incineration” or “waste to energy” burns plastic for energy.
  • “Plastic-to-fuel” or “gasification” or “pyrolysis” generates fuel. This output is rarely used for anything but burning due to the additional processing required to use for any other purpose.
  • “Chemical recycling” could, in theory, lead to new plastic products. This technology is unproven and currently not a scalable solution. The outputs are often burned due to low quality.

Plastic waste burning, regardless of the euphemism employed, is a well established environmental health and justice concern.

Burning plastics creates global pollution and has environmental justice impacts.

In its exhaustive 2019 report, the independent, nonprofit Center for International Environmental Law (CEIL) documents how burning plastic wastes increases unhealthy toxic exposures at every stage of the process. Increased truck traffic elevates air pollution, as do the emissions from the burner itself. Burned plastic produces toxic ash and residue at approximately one fifth the volume of the original waste, creating new disposal challenges and new vectors of exposure to additional communities that receive these wastes.7

In the US, eight out of every 10 solid waste incinerators are located in low-income neighborhoods and/or communities of color.8 This means, in some cases, the same communities that are disproportionately burdened with the pollution and toxic chemical releases related to the manufacture of virgin plastics are again burdened with its carbon and chemical releases when it is inevitably burned at the end of its life.

The issue is global in scale. A recent report by the United Nations Environment Program (UNEP) found that “plastic waste incineration has resulted in disproportionately dangerous impacts in Global South countries and communities.” The Global Alliance for Incineration Alternatives (GAIA), a worldwide alliance of more than 800 groups in over 90 countries, has been working for more than 20 years to defeat efforts to massively expand incineration, especially in the Global South. GAIA members have identified incineration not only as an immediate and significant health threat in their communities, but also a major obstacle to resource conservation, sustainable economic development, and environmental justice.

Where do we go from here?

  1. Minimize production of virgin plastic. This should be the main focus of any plastic waste reduction plan and part of any comprehensive climate change initiative. Policies banning single use plastics or banning the construction of new plastic production facilities or facility expansions are two example solutions cited by GAIA.9 Less plastic means less waste and less material to incinerate. 
  2. Invest in true circular economy initiatives. These may include, for example: extended producer responsibility programs, materials passports, materials disclosure, elimination of toxic chemical additives, product as a service models, and recycling facilities that support upcycling. By shifting industry investments toward circular economy infrastructure  – instead of the nearly $200 billion investments in increased manufacturing and burning capacity – the plastic industry could start to be part of the solution of reducing plastic waste.
  3. When evaluating the “expense” of recycling and circularity vs business-as-usual, a fair calculation for the latter needs to include all costs associated with the production, use, and end of life impacts of plastics. That “cheap” vinyl floor is no longer so inexpensive when the full costs of global pollution and the health burdens of people of color and low income communities are included in the math. Externalities must be a part of the equation.

What is unquestionable is this: Today our only choices for plastic waste are to burn or landfill most of it. Expanding plastics production and incineration is a conscious decision to perpetuate well documented, fully understood inequity and injustice in our building products supply chain.

The folks at The Story of Stuff cover this in The Story of Plastics, four minute animated short suitable for the whole family.  Comedian John Oliver tells the “R-rated” version of the story with impeccable research and insightful humor in his HBO show Last Week Tonight. It’s worth a look to learn exactly how the plastics industry uses the illusion of recycling to sell ever increasing volumes of plastic. Without manufacturer responsibility and investment, efforts to truly incorporate plastic into a circular economy have little chance of success.